Darcian permeability constant as indicator for shear stresses in regular scaffold systems for tissue engineering.

نویسندگان

  • Petra Vossenberg
  • G A Higuera
  • G van Straten
  • C A van Blitterswijk
  • A J B van Boxtel
چکیده

The shear stresses in printed scaffold systems for tissue engineering depend on the flow properties and void volume in the scaffold. In this work, computational fluid dynamics (CFD) is used to simulate flow fields within porous scaffolds used for cell growth. From these models the shear stresses acting on the scaffold fibres are calculated. The results led to the conclusion that the Darcian (k(1)) permeability constant is a good predictor for the shear stresses in scaffold systems for tissue engineering. This permeability constant is easy to calculate from the distance between and thickness of the fibres used in a 3D printed scaffold. As a consequence computational effort and specialists for CFD can be circumvented by using this permeability constant to predict the shear stresses. If the permeability constant is below a critical value, cell growth within the specific scaffold design may cause a significant increase in shear stress. Such a design should therefore be avoided when the shear stress experienced by the cells should remain in the same order of magnitude.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relationship between fracture dip angle, aperture and fluid flow in the fractured rock masses

Most of the Earth's crust contains fluids, and fractures are common throughout the upper part. They exist at a wide range of scales from micro-fractures within grains to major faults and shear zones that traverse the crust. In this paper, the stress-dependent permeability in fractured rock masses have been investigated considering the effects of nonlinear normal deformation and shear dilation o...

متن کامل

Effects of scaffold architecture on mechanical characteristics and osteoblast response to static and perfusion bioreactor cultures.

Tissue engineering focuses on the repair and regeneration of tissues through the use of biodegradable scaffold systems that structurally support regions of injury while recruiting and/or stimulating cell populations to rebuild the target tissue. Within bone tissue engineering, the effects of scaffold architecture on cellular response have not been conclusively characterized in a controlled-dens...

متن کامل

Influence of Additive Manufactured Scaffold Architecture on the Distribution of Surface Strains and Fluid Flow Shear Stresses and Expected Osteochondral Cell Differentiation

Scaffolds for regenerative medicine applications should instruct cells with the appropriate signals, including biophysical stimuli such as stress and strain, to form the desired tissue. Apart from that, scaffolds, especially for load-bearing applications, should be capable of providing mechanical stability. Since both scaffold strength and stress-strain distributions throughout the scaffold dep...

متن کامل

Modeling of Bio Scaffolds: Structural and Fluid Transport Characterization

Scaffolds play a key role in tissue engineering and can be produced in many different ways depending on the applications and the materials used. Most researchers used an experimental trialanderror approach into new biomaterials but computer simulation applied to tissue engineering can offer a more exhaustive approach to test and screen out biomaterials. This paper develops the model of scaffold...

متن کامل

3-D computational modeling of media flow through scaffolds in a perfusion bioreactor.

Media perfusion bioreactor systems have been developed to improve mass transport throughout three-dimensional (3-D) tissue-engineered constructs cultured in vitro. In addition to enhancing the exchange of nutrients and wastes, these systems simultaneously deliver flow-mediated shear stresses to cells seeded within the constructs. Local shear stresses are a function of media flow rate and dynami...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomechanics and modeling in mechanobiology

دوره 8 6  شماره 

صفحات  -

تاریخ انتشار 2009